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Prototypical Salient Assemblage

Assemblage constructed from 3 salient units.

Concise data storage (24 constants)[
3.0 0.0 1.0 0 0.0 0.0 1.0 0
2.0 0.0 0.5 0 0.0 0.5 0.5 0
2.0 0.5 0.2 0 0.0 0.5 0.2 0

]
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Salient Assemblage Representation yr = f(xi)

Requirements

• Add, remove, reposition, deform salient units.

• Asymptotic C∞ salient blending.

• Topologically invariant, homeomorphic with

one parameter space.

• Local control of salient direction, shape,

size, and volume, at least approximately.

• Recursive attachment rules, like alignment

with principal directions.

• Applies to any dimension (i = 1,2, . . . , n).
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Salient Assemblage is Topologically Invariant

Appended to Torus

4



Salient Assemblage Representation yr = f(xi)

Characteristics

• Constructive formulation, salient semiaxes

form finite skeleton substructure.

• Concise data storage.

• One patch, thus no patch boundary, avoid

geodesic cusp.

• Parameters usually have physical significance.

• Nowhere flat.

• Complicated algebraic expressions require

computer.
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Applications

• Parametric Systems (multidimensional)

– Chemical reaction

– Economy

– Decision making

– Geodesic determination

• Geometric Modeling (shape sensitive)

– External fluid flow

– Biological surface, deformation, growth

– Telecommunicating complicated geom-

etry using concise data storage
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Key Issues

• What notation? Tensor notation for gen-

eral curvilinear coordinate transformations.

• How to control salient direction, shape, and

size, at least approximately.

• Account for parameter stretching and co-

ordinate curve obliquity.

• Account for salient attachment in high-curvature

regions.

• Efficiently compute complicated algebraic

expressions.
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Comparison with Other Mathematics

Frequently Asked Questions

• Why not conformal mapping? Powerful but too
specialized—requires analytic mapping, preserves an-
gle, limited to 2 dimensions, corresponds to minimal
surfaces, a special class of manifolds. A salients
has less restrictive C∞ continuity and can be mul-
tidimensional.

• Why not 3D modeling, partition into small spline
patches? Very complicated face, edge, and ver-
tice relations in high dimensions. Patch boundaries
complicate geodesic computation.

• Why not use Fourier Transform, making period ar-
bitrarily large? Salient is more natural, not defined
by a integral.

• Why is a salient a tensor-product surface? Effi-
cient evaluation and partial derivatives, and easily
extends to higher dimensions.

• Can a salient be a minimal surface? No. It has
non-constant curvature. It is nowhere flat.

8



Comparison with Spline Representations

Assemblage Multi-patch Splines
primitive salient spline
formulation function discrete
recursive yes no
topology modeling invariant flexible
parameters physical arbitrary
patch coverage large small
patch boundary C∞ C2

data storage salient constants control vertices

Both are parametric representations and are compatible.
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Presentation Overview

1. Describe a salient.

2. Describe ExpHermite salient, a generalized

Fourier series.

3. Describe salient attachment rules.

4. Derive parametric representation yr = f(xi).

5. Apply differential geometry methods, e.g.

geodesics.
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Definitions

Definition 1 A salient is the mathematical representa-
tion of a distinguishable geometric part. It is a class C∞

bounded function on IR that, along with all its bounded
derivatives, vanishes sufficiently far from one set of para-
metric arguments.

y0

x1, y1

1D Salient

Definition 2 An assemblage is a collection of attached
salients.

y0

x1, y1

1D Assemblage
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1D Salient

y0

x1, y1

1D Salient

t��*

y0

x1, y1

Main Semiaxis Direction (Dihedral)

y0 = η0Ŝ,

y1 = x1 + η1Ŝ,

where ηr are direction cosines.
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2D Salient

y0

x1, y1

x2, y2

y0 = η0Ŝ,

y1 = x1 + η1Ŝ,

y2 = x2 + η2Ŝ.

More concise notation for any dimension

yr = δri x
i + ηrŜ,

where r = 0,1, . . . , n; i = 1,2, . . . , n

and ηρ ηρ = 1.
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Salient Derivatives are Salients

SS;11S;12S;13

1D Salient and Its First Three Derivatives

If 1D salient S and its derivatives are linearly
independent, then linear combination

Ŝ = c0S + c1S;1 + c2S;11 + · · ·+ cnhS;1nh

= chS;1h (sum on h = 0,1, . . . , nh).

spans a wider collection of 1D salients.
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2D Salient

A linear combination of a 2D salient S(x1, x2)

and its derivatives

Ŝ = ch1h2S
;1h12h2(x1, x2),

is also a 2D salient.

Consider only factorable S. Then Ŝ is a tensor-

product surface,

Ŝ =
(
c
h1
(1)S(1);1h1

(
x̄1
))
· · ·

(
chn(n)S(n);nhn (x̄n)

)
,

=
∏
j

c
hj
(j)S(j);j

hj

(
x̄j
)
.

Consequently,

yr = δri x
i + ηrŜ = δri x

i + ηr
∏
j

c
hj
(j)S(j);j

hj

(
x̄j
)
.
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Salient Nomenclature
y0

x1, y1

x2, y2

X̄(1)� -

X̄(2)*
�

Although a salient is open and unbounded, ellipse nomen-
clature is useful.

Definition 3 Salient origin, denoted by Ẋi, is the salient’s
local coordinate origin.

Local curvilinear coordinates, centered on salient origin,
are

x̆i ≡ xi − Ẋi.

Definition 4 Salient main semiaxis is the line segment
from salient origin in direction ηr.

Definition 5 Salient height is main semiaxis length.

Definition 6 Salient vertex is main semiaxis endpoint.

Definition 7 Salient x̄j-semiaxis is the positive canon-
ical coordinate x̄j axis.

Definition 8 Salient semiaxis width X̄(j) is the x̄j-semiaxis
radial width at which salient height is 1/e times the main
semiaxis height.
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Local Curvilinear to Canonical Coordinate

Transformation

In two-dimensions, scaling and rotation trans-

formations are[
x̄1

x̄2

]
=

[
1/X̄(1) 0

0 1/X̄(2)

]  ζ1
1 ζ1

2

ζ2
1 ζ2

2

 [ x̆1

x̆2

]
.

In any dimension,

x̄j = χjαζ
α
i x̆

i.
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2D Salient (Tensor-Product Surface) with

Two Shapes

Rectangle and Cone Approximations (5 terms)

In this case, salient semiaxes are rotated π/4

from rectangular axes.
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Candidate Salient Functions

• exp
(
−x2

)

• 2 exp (x) /(1 + exp (2x))

• sin(ax)/x

• Bessel function J0(x)

• J1(x)/x

• sech(x)

• 1/(1 + ax2)
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Exponent-Salient Function

exp
(
−
(
(x1)2 + · · ·+ (xn)2

))
≡ exp

(
−xixi

)
.

continuous for parametric arguments but negli-

gible sufficiently far from origin (x1, x2, . . . , xn) =

(0,0, . . . ,0).

Approximate values are:

x1 exp
(
−(x1)2

)
0 1
1 0.36788
2 0.01831
3 1.23410× 10−4

4 1.12535× 10−7

5 1.38879× 10−11
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Hermite Polynomials

Exponent-salient function has derivatives of all

orders

dh

dxh
exp

(
−x2

)
= exp

(
−x2

)
Hh (x) .

Definition 9 Hermite polynomials are

H0 (x) = 1,

H1 (x) = −2x,

Hh+1 (x) = −2
(
xHh (x) + hHh−1 (x)

)
.

First few Hermite Polynomials

H0 (x) = 1,

H1 (x) = −2x,

H2 (x) = −2 + 4x2,

H3 (x) = 12x− 8x3,

H4 (x) = 12− 48x2 + 16x4,

H5 (x) = −120x+ 160x3 − 32x5.
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ExpHermite Series

Hermite polynomial products, weighted by exp
(
−x2

)
,

are orthogonal,∫ ∞
−∞

exp
(
−x2

)
Hh (x)Hθ (x) dx =

{
0 if h 6= θ
2hh!
√
π if h = θ.

Expand given salient function as an ExpHermite series

f(x) = exp
(
−x2

)
chHh (x) (sum on h = 0,1, . . . , nh).

where ch are ExpHermite coefficients and the ExpHer-
mite series is a generalized Fourier series. To find ch,
multiply both sides by Hθ (x),

f(x)Hθ (x) = exp
(
−x2

)
chHh (x)Hθ (x) .

Integrating both sides gives∫ ∞
−∞

f(x)Hθ (x) dx = ch
∫ ∞
−∞

exp
(
−x2

)
Hh (x)Hθ (x) dx.

Because of orthogonality, for any particular h,∫ ∞
−∞

f(x)Hh (x) dx = ch
∫ ∞
−∞

exp
(
−x2

)
(Hh (x))2 dx.

From first equation above,

ch =
1

2hh!
√
π

∫ ∞
−∞

f(x)Hh (x) dx.

22



ExpHermite Coefficients for Special Shapes

Using

ch =
1

2hh!
√
π

∫ ∞
−∞

f(x)Hh (x) dx,

determine coefficients:
f(x) c0 c2 c4 c6

exponent exp
(
−x2
)

1 0 0 0

rectangle 1 2√
π

−1
6
√
π

−1
240
√
π

29
20160

√
π

cone 1− |x| 1√
π

−1
6
√
π

19
1440

√
π

−13
20160

√
π

parabola 1− x2 4
3
√
π

−1
5
√
π

11
840
√
π

−37
90720

√
π

semicircle
√

1− x2
√
π

2
−
√
π

16

√
π

384

√
π

18432

These shapes are even functions with unit

height and unit semiaxis width.
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Approximation by ExpHermite Series

Rectangle

f(x) =

{
0 if x < −1
1 if − 1 ≤ x ≤ 1
0 if x > 1,

is approximated by

f(x) ≈
exp
(
−x2
)

√
π

(
2−

1

6
H2(x)−

1

240
H4(x) +

29

20160
H6(x)

−
67

580608
H8(x)

)
.

To compute, transform to power series

f(x) ≈ exp
(
−x2
) (

(((−0.01667x2 + 0.28528)x2 − 1.30219)x2

+ 1.19607)x2 + 1.08147
)
.

y0

x1, y1
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Approximation by ExpHermite Series

Cone approximation (5 terms)

f(x) =

{
0 if x < −1
1− |x| if − 1 ≤ x ≤ 1
0 if x > 1.

y0

x1, y1

Parabola approximation (5 terms)

f(x) =

{
0 if x < −1
1− x2 if − 1 ≤ x ≤ 1
0 if x > 1.

y0

x1, y1
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2D Ramp Approximation by Tensor-Product

of ExpHermite Series
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2D Rectangle Approximation by

Tensor-Product of ExpHermite Series
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ExpHermite Series Successive Approximations

Change Shape but not Volume

Since ∫ ∞
−∞

exp
(
−x2

)
dx =

√
π,

and for h > 0,∫ ∞
−∞

exp
(
−x2

)
Hh (x) dx = 0,

then volume V under approximating surface is

V =
∫
X

exp (−x̄γx̄γ)
∏
j

c
hj
(j)Hhj

(
x̄j
)
dx1 · · · dxn,

=

∏
j

c0(j)

∫
X̄

exp (−x̄γx̄γ) dx̄1 · · · dx̄n,

= πn/2∏
j

c0(j).
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Assemblage Definitions

Definition 10 An assemblage is a collection

of attached salients.

Definition 11 A salient’s parent is the assem-

blage to which it is attached.

Definition 12 A salient is a child to its par-

ent.

Definition 13 A child’s bud is the point Ẏ r =

yr(Ẋi), located on the parent.

Definition 14 A child’s dihedral is the mini-

mum angle its main semiaxis forms with the

parent’s tangent plane at the bud.
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Salient Attachment by Vector Addition

bark

t
bark-bud

t6
bark-bud-branch

t��7
bark-bud-branch

tCCO

bark-bud-branch

Each salient depends on all its parents.

t6
t - t���t�tCCO

y0

x1, y1
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Salient Direction Cosine (Dihedral) Rule

The mth salient main semiaxis can have any

direction ηrm, but usually is either:

• parent’s unique normal vector,

• branch angle, coplanar with parent’s posi-

tive main semiaxis,

• fixed angle to rectangular axes yr.

Rule can be an inherited.

t6
t - t���t�tCCO

y0

x1, y1
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Parameter Stretching and Coordinate Curve

Obliquity

y0

x1, y1

Child Salients Affected by Parameter Stretching

Coordinate Curve Obliquity
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Arc-Length and Oblique Coordinate

Transformations

Given by metric tensor gij at salient origin.

Arc-length coordinate transformation (2D)

[λεi ] =

[ √
g11 0
0

√
g22

]
.

Oblique coordinate transformation (2D)

[ωγε ] =


1 g12√

g11
√
g22

0

√
1− (g12)2

g11g22

 ,

from Gramm-Schmidt orthonormalization.
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Semiaxis Alignment Coordinate

Transformation

Semiaxes are aligned with either:

• principal directions at bud, eigenvectors of

[biα] [xα] = κ [giα] [xα] .

• branch angle direction, in the normal sec-

tion that is parallel to the parent’s positive

main semiaxis,

• fixed direction relative to rectangular axes

yr,

• one coordinate curve tangent vector.

Rule can be an inherited.
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Salient Addition

Salient addition is closed.

Addition of a coupled salient is non-commutative

and non-associative.

t6
tPPi

t6 t���

y0

x1, y1

Non-commutative Salient Addition
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Salient Attachment in High-Curvature

Regions

Definition 15 If child salient is smaller, the

interaction is hierarchical or tree-like.

Definition 16 If child salient is approximately

the same size or larger, the interaction is tumor-

like, or if flattened anvil-like.

t6
t�

t6

t -
y0

x1, y1

Tree-like and Tumor-like Salient Interaction

Two widely separated salients m1 and m2 are

approximately orthogonal,∫
IRn
|Ŝm1 Ŝm2| dx1 dx2 · · · dxn ≈ 0.
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Salient Assemblage Representation

Overall coordinate transformation

Υj
(m)i ≡ χ

j
(m)αζ

α
(m)βς

β
(m)γω

γ
(m)ελ

ε
(m)i.

Canonical coordinates

x̄
j
(m) = Υj

(m)i

(
xi − Ẋi

(m)

)
.

Parametric representation

yr = δri x
i + ηrmŜ

m,

= δri x
i + ηrm

∏
j

c
hj
(mj)S

m

(j);j
hj

(
x̄
j
(m)

)
.

First partial derivative

yr,k = δrk + ηrmΥα
(m)kŜ

m
,α,

= δrk + ηrmΥα
(m)k

∏
j

c
hj
(mj)S

m

(j);j
hj+δα

j

(
x̄
j
(m)

)
.

Second partial derivative

yr,kl = ηrmΥα
(m)kΥβ

(m)lŜ
m
,αβ,

= ηrmΥα
(m)kΥβ

(m)l

∏
j

c
hj
(mj)S

m

(j);j
hj+δα

j
+δ

β
j

(
x̄
j
(m)

)
.
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1D ExpHermite Assemblage

ExpHermite salients in the form

Ŝm = expm
(
−(x̄1

(m))2
)
ch(m)Hh

(
x̄1

(m)

)
.

combine to form assemblage like

Cone, Parabola, and Rectangle in Tree
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ExpHermite Salient Assemblage

Representation

Parametric representation

yr = δri x
i + ηrm expm

(
−x̄γ

(m)
x̄γ

(m)

)∏
j

c
hj
(mj)

Hhj

(
x̄j

(m)

)
.

First partial derivative

yr,k = δrk + ηrmΥα
(m)k expm

(
−x̄γ

(m)
x̄γ

(m)

)∏
j

c
hj
(mj)

Hhj+δα
j

(
x̄j

(m)

)
.

Second partial derivative

yr,kl = ηrmΥα
(m)kΥ

β
(m)l

expm
(
−x̄γ

(m)
x̄γ

(m)

)∏
j

c
hj
(mj)

Hhj+δα
j

+δβ
j

(
x̄j

(m)

)
.
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Global Cylindrical Coordinates

(ρ, θ, z) to rectangular yr

y0 = z,

y1 = ρ cos θ,

y2 = ρ sin θ.

Inverse transformation

z = y0,

ρ =
√

(y1)2 + (y2)2,

θ = tan−1
(
y2/y1

)
.

Global cylinder ρ = R is

x1 = R sin θ,

x2 = z.

Global point (Θ̇, Ż) becomes m0 salient origin

Ẋ1
(0) = R sin Θ̇(0),

Ẋ2
(0) = Ż(0).
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Global Spherical-Polar Coordinates

(ρ, φ, θ) to rectangular yr

y0 = ρ cosφ,

y1 = ρ sinφ cos θ,

y2 = ρ sinφ sin θ.

Inverse transformation

ρ =
√

(y0)2 + (y1)2 + (y2)2,

φ = tan−1
(√

(y1)2 + (y2)2/y0
)
,

θ = tan−1
(
y2/y1

)
.

Global sphere ρ = R is

x1 = R sinφ cos θ,

x2 = R sinφ sin θ,

Global point (Θ̇, Φ̇) becomes m0 salient origin

Ẋ1
(0) = R sin Φ̇(0) cos Θ̇(0),

Ẋ2
(0) = R sin Φ̇(0) sin Θ̇(0).
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Assemblage Self-Intersection

t6
t��1

t6
tPPi

y0

x1, y1

Position vectors yr of main semiaxes:

yr(m1) = Ẏ r
(m1) + t1η

r
(m1),

yr(m2) = Ẏ r
(m2) + t2η

r
(m2),

where Ẏ r
(m1)

and Ẏ r
(m2)

are buds, and t1 and t2 are scalar real param-

eters. Perpendicular connecting vector(
yr(m1) − yr(m2)

)
ηr(m1) = 0,(

yr(m1) − yr(m2)
)
ηr(m2) = 0.

So [
ηr

(m1)
η
r(m1)

−ηr
(m2)

η
r(m1)

ηr
(m1)

η
r(m2)

−ηr
(m2)

η
r(m2)

][
t1
t2

]
=[

−(Ẏ r
(m1)
− Ẏ r

(m2)
)η

r(m1)

−(Ẏ r
(m1)
− Ẏ r

(m2)
)η

r(m2)

]
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Concise Data Storage

Salient-constant array for 2D assemblage
c

(0)
Ẋ1

(0)
X̄(1)

(0)
shape1

(0) ζ
(0)

Ẋ2
(0)

X̄(2)
(0)

shape2
(0)

c
(1)

Ẋ1
(1)

X̄(1)
(1)

shape1
(1) ζ

(1)
Ẋ2

(1)
X̄(2)

(1)
shape2

(1)

c
(2)

Ẋ1
(2)

X̄(1)
(2)

shape1
(2) ζ

(2)
Ẋ2

(2)
X̄(2)

(2)
shape2

(2)
...

...
...

...
...

...
...

...



One row for each salient.

Facilitate telecommunicating a complicated ge-

ometry.
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Efficient Computation

Assemblage

• Predict negligible terms from parameter values.

• Univariate factors in tensor-product.

• If recursive formula exists and is more efficient, use
it.

• For non-deforming, precompute assemblage con-
stants.

• For non-deforming, precompute coupling matrix.

• For partial derivatives, reuse previously computed
function evaluations and repeating chain-rule fac-
tors.

ExpHermite Assemblage

• Exponent function exp
(
−x2

)
factors out, leaving

efficient polynomial.

• Transform Hermite series to power series.

• If factor is even or odd function, half the terms are
zero and can be bypassed.
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Transform Hermite Series to Power Series

Hermite series has equivalent power series

d
qj
(mj)δαj hk

Pqj

(
x̄
j
(m)

)
= c

hj
(mj)Hhj+δαj hk

(
x̄
j
(m)

)
,

where

Pqj

(
x̄
j
(m)

)
≡
(
x̄
j
(m)

)qj
.

Coefficients transform as

d
qj
(mj)hk

= $
qj
ϑ δ

ϑ
θ+hk

cθ(mj),

where

[
$
qj
ϑ

]
=


1 0 −2 0 12
0 −2 0 12 0
0 0 4 0 −48
0 0 0 −8 0
0 0 0 0 16

.. .

 .

Multiplication δϑθ+hk
cθ(mj) is equivalent to a shift

of array c elements.
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Differential Geometry

Parametric representation and its first two par-

tial derivatives

yr, yr,k, yr,kl.

Jacobian matrix

J ≡ [Jri ](n+1)×n ≡ y
r
,i.

Base vectors are functions of position (curvi-

linear coordinates)

ai = y,i ≡ y
ρ
,ieρ.

Metric tensor

gij ≡ ai aj.

Since yr are rectangular coordinates with the

Euclidean metric,[
gij
]

= JTJ =
[
y
ρ
,i y

ρ
,j

]
.
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Differential Geometry

A more general Riemannian metric, including

non-Euclidean, is[
gij
]

= JTGJ.

If J is full rank, then there exists a gij such

that

giα gαj = δij.

Metric tensor determinant

g ≡ |gij|.

For two dimensions, g = g11g22 − (g12)2.

Cosine between xi and xj-parametric curves

cosω = gij/
√
gii gjj (no sum on i, j).

Invariant First Fundamental Form

I ≡ gijdxi dxj.
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Differential Geometry

Christoffel symbols of the first kind

Γijk ≡
1

2

(
gjk,i + gki,j − gij,k

)
.

With rectangular coordinates yr and Euclidean

metric

Γijk = y
ρ
,k y

ρ
,ij.

Christoffel symbols of the second kind

Γkij ≡ g
kαΓijα.

Riemannian tensor of the second kind

Rijkl ≡ Γijl,k − Γijk,l + ΓαjlΓ
i
αk − ΓαjkΓiαl.

Riemannian tensor of the first kind

Rijkl ≡ giαRαjkl.

Gaussian curvature on a two-dimensional sur-

face

K =
R1212

g11g22 − (g12)2
.

48



Differential Geometry

Surface curve, function of parameter t,

xi ≡ xi(t),

in ambient coordinates yr, is composite func-

tion

yr ≡ yr(xi(t)).

Curve’s tangent is given by chain-rule

dyr

dt
= yr,i

dxi

dt
.

Square of differential arc length is

(ds)2 = gij dx
i dxj.

Curve arc length is

s =
∫ x1

x0

√
gij dx

i dxj =
∫ t1
t0

√
gij

dxi

dt

dxj

dt
dt.

Two-dimensional surface area is

A =
∫
X

√
g dx1 dx2.
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Geodesic

A geodesic xi(s) solves system of differential equations

d2xk

ds2
+ Γk

ij

dxi

ds

dxj

ds
= 0.

Geodesic on surface (http://www.netlib.org/ode/geodesic/)

Geodesic in parameter space
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Differential Geometry

Surface normal vector

Nr = εrst y
s
,1 y

t
,2.

Unit normal vector

nr ≡ Nr/
√
NρNρ.

Invariant Second Fundamental Form

II ≡ bijdxi dxj,

with coefficients from curvature tensor

bij ≡ y
ρ
,ijnρ.

For two dimensions,

b ≡ |bij| = b11b22 − (b12)2.

Gauss equation

yr,ij = Γαij y
r
,α + bijn

r.

Weingarten equation

nr,i = −gαβbiαyr,β = −bβi y
r
,β.
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Tensor Applications

Newton’s second law

F r = m
dvr

dt
,

= m

(
d2yr

dt2
+ Γrij

dxi

dt

dxj

dt

)
,

is valid in all coordinate systems.

Describes a force field on a curved surface, like

the interface between two fluids.

52



Potential Flow Examples

y0

x1, y1

x2, y2

-

-

-

-

-

U∞

-

U∞

Potential Flow over Plane: φ = −U∞x2

y0

x1, y1

x2, y2

-

-

-

-

-

U∞
-

2U∞

Potential Flow over Cylinder: φ = −U∞
(

1 + R2

r2

)
r cos θ
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Potential Flow Examples

y0

x1, y1

x2, y2

-

-

-

-

-

U∞
-

1.5U∞

Potential Flow over Sphere: φ = −U∞
(

1 + R3

2r3

)
r cos θ

y0

x1, y1

x2, y2

-

-

-

-

-

U∞
-

?

Potential Flow over Salient
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Conclusions

Salient assemblage representation is important because:

• Complexity of many problems stems from repre-
sentation of irregular or deforming geometry. An
assemblage decomposes a geometric object into
asymptotic blending salient units. It models a mul-
tidimensional parametric system.

• A linear combination of a 1D salient and its deriva-
tives spans a wider collection of 1D salients.

• Salients are attached with recursive rules on dihe-
dral and semiaxis alignment.

• An assemblage covers the surface of interest with
one patch.

• An assemblage has concise data storage.

• It allows efficient computation.

ExpHermite assemblage representation has advantages:

• Built-in data fitting using ExpHermite series, a gen-
eralized Fourier series.

• Efficient polynomial computation.
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