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Prototypical Salient Assemblage

Assemblage constructed from 3 salient units.

Concise data storage (24 constants)
30 00 1.0 O 00 00 10 O
20 00 05 0O 00 05 05 O
20 05 02 0 00 05 02 O



Salient Assemblage Representation y" = f(z*)
Requirements

e Add, remove, reposition, deform salient units.

e Asymptotic C'°° salient blending.

e Topologically invariant, homeomorphic with
one parameter space.

e Local control of salient direction, shape,
size, and volume, at least approximately.

e Recursive attachment rules, like alignment
with principal directions.

e Applies to any dimension (i =1,2,...,n).
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Salient Assemblage is Topologically Invariant

Appended to Torus




Salient Assemblage Representation y" = f(z*)
Characteristics

e Constructive formulation, salient semiaxes
form finite skeleton substructure.

e Concise data storage.

e One patch, thus no patch boundary, avoid
geodesic cusp.

e Parameters usually have physical significance.

e Nowhere flat.

e Complicated algebraic expressions require
computer.



Applications

e Parametric Systems (multidimensional)
— Chemical reaction
— Economy
— Decision making

— Geodesic determination

e Geometric Modeling (shape sensitive)
— External fluid flow
— Biological surface, deformation, growth

— Telecommunicating complicated geom-
etry using concise data storage



Key Issues

What notation? Tensor notation for gen-
eral curvilinear coordinate transformations.

How to control salient direction, shape, and
Ssize, at least approximately.

Account for parameter stretching and co-
ordinate curve obliquity.

Account for salient attachment in high-curvature
regions.

Efficiently compute complicated algebraic
expressions.



Comparison with Other Mathematics
Frequently Asked Questions

Why not conformal mapping? Powerful but too
specialized—requires analytic mapping, preserves an-
gle, limited to 2 dimensions, corresponds to minimal
surfaces, a special class of manifolds. A salients
has less restrictive C'°° continuity and can be mul-
tidimensional.

Why not 3D modeling, partition into small spline
patches? Very complicated face, edge, and ver-
tice relations in high dimensions. Patch boundaries
complicate geodesic computation.

Why not use Fourier Transform, making period ar-
bitrarily large? Salient is more natural, not defined
by a integral.

Why is a salient a tensor-product surface? Effi-
cient evaluation and partial derivatives, and easily
extends to higher dimensions.

Can a salient be a minimal surface? No. It has
non-constant curvature. It is nowhere flat.



Comparison with Spline Representations

Assemblage Multi-patch Splines
primitive salient spline
formulation function discrete
recursive yes no
topology modeling invariant flexible
parameters physical arbitrary
patch coverage large small
patch boundary C> C?
data storage salient constants control vertices

Both are parametric representations and are compatible.



Presentation Overview

. Describe a salient.

. Describe ExpHermite salient, a generalized
Fourier series.

. Describe salient attachment rules.

. Derive parametric representation y" = f(z?).

. Apply differential geometry methods, e.g.
geodesics.
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Definitions

Definition 1 A salient is the mathematical representa-
tion of a distinguishable geometric part. It is a class C*°
bounded function on IR that, along with all its bounded
derivatives, vanishes sufficiently far from one set of para-
metric arguments.

yO
%%% % % %%% zt,yt
1D Salient
Definition 2 An assemblage s a collection of attached
salients.
yO

1D Assemblage
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1D Salient

0
Y
% % | | | | | : xl yt
1D Salient
0
Yy
] % % % N E xl yt

Main Semiaxis Direction (Dihedral)

y© n°S,
y! = 2t +9ls,

where n” are direction cosines.
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2D Salient

y© n°S,
1 CUl—I—?]lS,
2 = 22+ n28.

S
|

More concise notation for any dimension
y" = djx' + "5,

where r =0,1,...,n;2=1,2,...,n
and nfnf = 1.
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Salient Derivatives are Salients

S;13_ﬁ§;12 S S”

1D Salient and Its First Three Derivatives

If 1D salient S and its derivatives are linearly
independent, then linear combination

S = COS+Cls;1—|—CQS;11—|—°°°—|—CnhS;1nh
= ChS;lh (sum on h = O,l,...,’n,h).

spans a wider collection of 1D salients.
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2D Salient

A linear combination of a 2D salient S(a!,z2)
and its derivatives
§ = Chlhzs 1h12h2($ x2)

is also a 2D salient.

Consider only factorable S. Then S is a tensor-
product surface,

5 b 1 - )
S = (S (7))~ (S @),
h; .
B l}cd)sm;j”j ().
Consequently,

y" —5T:BZ—I—77TS—5T:U7’—I—77 Hc(]) ()Jj(izj>.
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Salient Nomenclature

Although a salient is open and unbounded, ellipse nomen-
clature is useful.

Definition 3 Salient origin, denoted by X*, is the salient’s
local coordinate origin.

L.ocal curvilinear coordinates, centered on salient origin,
are

=z — X"

Definition 4 Salient main semiaxis is the line segment
from salient origin in direction n".

Definition 5 Salient height is main semiaxis length.
Definition 6 Salient vertex is main semiaxis endpoint.

Definition 7 Sa(ient T/-semiaxis is the positive canon-
ical coordinate x’ axis.

Definition 8 Salient semiaxis width X() s the z7-semiaxis
radial width at which salient height is 1 /e times the main
semiaxis height.
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Local Curvilinear to Canonical Coordinate
Transformation

In two-dimensions, scaling and rotation trans-

formations are

51]:[1/)—((1) 0 ]C11 C%_[:El]

(2 (P

72 o 1/X(3)

In any dimension,

=] — =t
) = x L rat.
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2D Salient (Tensor-Product Surface) with
Two Shapes

Rectangle and Cone Approximations (5 terms)

In this case, salient semiaxes are rotated n/4
from rectangular axes.
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Candidate Salient Functions
exp (—:cz)
2exp (x) /(1 + exp (2x))
sin(ax)/x
Bessel function Jg(x)
Ji(z)/x
sech(x)

1/(1 + az?)
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Exponent-Salient Function

exp (— ((acl)2 + -4 (m”)2>> = exp (—wzxz) .
continuous for parametric arguments but negli-

gible sufficiently far from origin (z1,z2,...,2") =
(0,0,...,0).

Approximate values are:

7l exp (—(:cl)Q)

1
0.36788
0.01831

1.23410 x 10~ 4
1.12535 x 107
1.38879 x 1011

O WNDEHEO
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Hermite Polynomials

Exponent-salient function has derivatives of all
orders

%hh exp (—xz) = exp (—36‘2) Hp, (z) .

Definition 9 Hermite polynomials are

Ho(x) = 1,
Hl (ZB) — —QCE,
Hyppq1(zx) = —2(xzHp(z)+hHp_1(x)).

First few Hermite Polynomials

Hg(xz) = 1,

Hi(x) = —2x,

Hy(x) = —2—|—4:122,

Hz(z) = 12z — 8z3,
Hy(z) = 12— 4822+ 1627,

— 120z + 1603 — 322°.

Hs ()
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ExpHermite Series

Hermite polynomial products, weighted by exp (—xQ),
are orthogonal,

/OO exp (—z?) Hy, (z) Hy (z) dz = { ghh!ﬁ :: Z i g

— 00

Expand given salient function as an ExpHermite series
f(z) = exp (—z°) "H), (z) (sum on h=0,1,...,n3).

where ¢ are ExpHermite coefficients and the ExpHer-
mite series is a generalized Fourier series. To find c*,
multiply both sides by Hy (x),

f(x)Hy (x) = exp (—562) "Hy, () Hy (x) .

Integrating both sides gives

/oo f(x)Hy (z) dz = " /OO e (_xQ) Hy, (x) Hy (z) da.

— 00

Because of orthogonality, for any particular h,

/OO f(z)Hyp, (z) de = " /OO exp (—xQ) (Hy, (z))? de.

— o0

From first equation above,

1 0
"= m/—oo f(x)Hy (x) dex.
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ExpHermite Coefficients for Special Shapes

Using
1 o0
= e [ S@H) (@) da,
determine coefficients:
f(x) cY c® ct c®
exponent | exp (—:1;2) 1 0 0 0
2 —1 —1 29
rectangle 1 7 8/ 240U 201600
1 1 19 ~13
cone 1 — |af Vr  6vx 1440y 20160/x
2 4 —1 11 —37
parabola l1-= 3V7 5vx 840z  90720vx
- VA, SN Vs
SemICIl’Cle 1 — $2 5 1—6 m m

These shapes are even functions with unit
height and unit semiaxis width.

23



Approximation by ExpHermite Series

Rectangle

0 fz<-1
f(x) = 1 if —1<z<1
0O ifax>1,

IS approximated by

exp (—z?) 1 1 29
fa) (2 ~ SHa(@) — 5y Ha(w) + 5o Ho()
67
B 580608H8($)) '

To compute, transform to power series

f(z) ~ exp (—2?) ((((—0.016672> 4 0.28528)x° — 1.30219)a”

+1.19607)2” + 1.08147) .

0
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Approximation by ExpHermite Series

Cone approximation (5 terms)

0
f(x)={ 1 — [z
0

if £ < -1
if —1<x<1
if x> 1.

Parabola approximation

0
f(:B)Z{ 1 — 22
0

(5 terms)

if z < —1
if —1<x<1
if ¢ > 1.




2D Ramp Approximation by Tensor-Product
of ExpHermite Series
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2D Rectangle Approximation by
Tensor-Product of ExpHermite Series

27



ExpHermite Series Successive Approximations
Change Shape but not Volume

Since
oo
/ exp (—$2) dr = /7,
—00
and for h > O,
0@
/ exp (—aj2> H; (x) de = 0O,
— o0

then volume V under approximating surface is

h. .
— _FVFY J 7 Lo dz™
V = /Xexp( x'x )l}c(j)th (:13 ) dx dx",

— (H c?j)> /)? exp (—z7%7) dzt- - - dz",
J

= 7"2[[ Q).
J
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Assemblage Definitions

Definition 10 An assemblage is a collection
of attached salients.

Definition 11 A salient’s parent is the assem-
blage to which it is attached.

Definition 12 A salient is a child to its par-
ent.

Definition 13 A child’s bud is the point Y" =
y"(X"), located on the parent.

Definition 14 A child’s dihedral is the mini-

mum angle its main semiaxis forms with the
parent’s tangent plane at the bud.
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Salient Attachment by Vector Addition
bark

bark-bud

*—

bark-bud-branch

'Bé?k:bud-branch

'Bé?k:bud-branch

Each salient depends on all its parents.




Salient Direction Cosine (Dihedral) Rule

The mth salient main semiaxis can have any
direction n,,, but usually is either:

e parent’s unique normal vector,

e branch angle, coplanar with parent’s posi-
tive main semiaxis,

e fixed angle to rectangular axes y".

Rule can be an inherited.




Parameter Stretching and Coordinate Curve
Obliquity

\1 | | | | 11 Coao1 01
T I I I I I I T I,y

Child Salients Affected by Parameter Stretching

i3 /
"

L
-
7

4
L
//%”"'f"ll
"%’?“

Coordinate Curve Obliquity
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Arc-Length and Obliqgue Coordinate
Transformations

Given by metric tensor g;; at salient origin.

Arc-length coordinate transformation (2D)

[/\ﬂ=[m 0
1 0 \/@

Oblique coordinate transformation (2D)

gi2

V911922
[wd] = ,

0 \/1—M

911922

from Gramm-Schmidt orthonormalization.
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Semiaxis Alignment Coordinate
Transformation

Semiaxes are aligned with either:

e principal directions at bud, eigenvectors of

[bia] [27] = & [gia] [27] -

e branch angle direction, in the normal sec-
tion that is parallel to the parent’s positive
main semiaxis,

e fixed direction relative to rectangular axes
Y,

e One coordinate curve tangent vector.

Rule can be an inherited.
34



Salient Addition

Salient addition is closed.

Addition of a coupled salient is non-commutative
and non-associative.

yO
e S LS

Non-commutative Salient Addition

35



Salient Attachment in High-Curvature
Regions

Definition 15 If child salient is smaller, the
interaction is hierarchical or tree-like.

Definition 16 If child salient is approximately
the same size or larger, the interaction is tumor-
like, or if flattened anvil-like.

0
Y
e 1
| | i } } i | % xl yt

Tree-like and Tumor-like Salient Interaction

Two widely separated salients m1 and mo are
approximately orthogonal,

/Bn|§m1 S72| dgt dz? - - - dz™ =~ 0.
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Salient Assemblage Representation

Overall coordinate transformation

. o 3
T%m)z — X%m)acgm)ﬁg(m)fywzm)e %m)z
Canonical coordinates
] i -7
oy = Ty (' = Xm) -
Parametric representation
yr — 5rxi_|_n77:n§m
ST —J
= 07 +anC(mJ) ()5 < (m))'

First partial derlvatlve

r

yr = O+ an(m)kSg’a

v hi  wm —j
= 6+ ”mT<m>kHC<mj)S(j);jhj+5§“ <w<m>) '

Second partial derivative

Ykl = (m)kT? ) B

=]
an(m)kT(m)l Hc(m]) () ]h +5a+56 ( (m)) .
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1D ExpHermite Assemblage

ExpHermite salients in the form
S = exp™ (=(@(n))?) oy Hh (Fimy) -

combine to form assemblage like

Cone, Parabola, and Rectangle in Tree
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ExpHermite Salient Assemblage
Representation

Parametric representation

y =4z ¢ + n,, exp™ (- H (mj) (m))

First partial derivative

Y = 0+ Ty e (=7, T H gy Hit0 (T -

Second partial derivative

Vit = T oy 0™ (=T T0) [T sy B (Floy) -
J

39



Global Cylindrical Coordinates

(p,0,z) to rectangular y"

y° = 2
y! = pcosé,
y2 = psiné.

Inverse transformation
z = yO,
p = VD2 + 22
0 tan—1 (y2/y1> :

Global cylinder p = R is

2! Rsin g,

x2

Z.
Global point (©, Z) becomes mg salient origin
. 1 _ . .
X(O) = RSsIn @(0)7
S
X0y = 40
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Global Spherical-Polar Coordinates

(p,,0) to rectangular y"

y? = pcosg,
yl = pSin¢Ccosé,
y°> = psin¢gsing.

Inverse transformation
p = V@24 H2 + 122,
6 = tan ! (V)2 + D).
9 = tan—! (yQ/yl).

Global sphere p= R is

ot Rsin ¢ cos?,

2 = Rsingsin,

Global point (©,®) becomes mg salient origin
. 1 . . .
X(O) — RSsSIn CD(O) COS @(0)7
> o y
X(O) = Rsin CD(O) sin @(0)-
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Assemblage Self-Intersection

0

Position vectors y” of main semiaxes:
yr(ml) — Y'(an) -+ tlnzml),
yr(mz) — Y'(Cm) -+ t2n€m2)7

where Y(;nl) and Y(fnz) are buds, and t; and t» are scalar real param-
eters. Perpendicular connecting vector

(yr(ml) _ yr(mz)) M (ma) 0.

So

oty ey | [ 1] -
M) Te(mz)  ~ma) Tr(mo) t2

[ o e |
~ Yy = Y (e
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Concise Data Storage

Salient-constant array

B 1 (1) 1

) X(O) X((CP) shape(o)
o1 Ve 1

1) X(1) X((11)) shapem
-1 % 1

coy Xy X@y shapepy

for 2D assemblage

$(0)
Sy
$2)

One row for each salient.

Facilitate telecommunicating a complicated ge-

ometry.

o2
e
~m
X(2)

= (2)
X0
X5
- (2)
X2

5 -
shapego)
shapegl)
shape(Q)
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Efficient Computation

Assemblage
e Predict negligible terms from parameter values.
e Univariate factors in tensor-product.

e If recursive formula exists and is more efficient, use
it.

e For non-deforming, precompute assemblage con-
stants.

e For non-deforming, precompute coupling matrix.

e For partial derivatives, reuse previously computed
function evaluations and repeating chain-rule fac-
tors.

ExpHermite Assemblage

e Exponent function exp (—z2) factors out, leaving
efficient polynomial.

e Transform Hermite series to power series.

e If factor is even or odd function, half the terms are
zero and can be bypassed.
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Transform Hermite Series to Power Series

Hermite series has equivalent power series

?%)5% Pyj (Tmy) = C?meh +a3h, (Tm)

where
()™

qu ( (m))

Coefficients transform as

4G = Yigd b
Uiy = T 08+hy(mj)
where

[ 1 0 -2 0 12 ]

0 -2 0O 12 0

;77 _ |0 0 4 o0 -48

[ 19} 0 o) O -8 o)

0 0 0 0 16

Multiplication (59+h ? ) IS equivalent to a shift
of array c elements.
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Differential Geometry

Parametric representation and its first two par-
tial derivatives

Yy Y Ykl

Jacobian matrix

J = [J{](n+1)><n =y
Base vectors are functions of position (curvi-
linear coordinates)

_ — P
az e y,'l, = y,zep.
Metric tensor
gij — ai aj.

Since y" are rectangular coordinates with the
Euclidean metric,
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Differential Geometry
A more general Riemannian metric, including
non-Euclidean, is
[gij] — JTGJ.

If J is full rank, then there exists a ¢g¥ such
that

9" gaj = 0;.
Metric tensor determinant

g = |gijl-

For two dimensions, g = g11922 — (g12)2.

Cosine between z! and z/-parametric curves

COSw = G;;//9ii 955 (no sum on 1,j).

Invariant First Fundamental Form
I = gmd:vz d:Uj
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Differential Geometry

Christoffel symbols of the first kind
1

Hijk = 5 (gjk:,z' T 9kij — gz’j,kz) :

With rectangular coordinates y" and Euclidean
metric

rijk — y’pk yﬁj-
Christoffel symbols of the second kind

Riemannian tensor of the second kind

1

7 S ) 1 a1 /6"
ikl = =ik T 05l ok = Tkl e
Riemannian tensor of the first kind

_ (@7
Rkl = gia Ly
Gaussian curvature on a two-dimensional sur-

face
R1212

g11922 — (912)2

K =
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Differential Geometry

Surface curve, function of parameter ¢,

' = 2'(1),
in ambient coordinates y", is composite func-
tion

= y"(2'(t)).
Curve's tangent is given by chain-rule

dy” da:

P e
Square of differential arc length is

(ds)? = 9ij dz’ da’ .
Curve arc length is
T — t1 dz’ da:J
— o dxt dx? —/ \/
"7 Jag \/g” o AT dt

Two-dimensional surface area is

A= /X \/Z]da:l dz?.
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Geodesic

A geodesic x'(s) solves system of differential equations

d2xF n rf,dxidij
ds? T ds ds

= 0.

Geodesic on surface (http://www.netlib.org/ode/geodesic/)

Geodesic in parameter space
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Differential Geometry

Surface normal vector

_ t
Nr = €pst yzgl y,2-
Unit normal vector

nfr = N'r'/\/Npr
Invariant Second Fundamental Form
IT = by;da" da?,
with coefficients from curvature tensor
bij = yﬁjnp.
For two dimensions,

b= |bj| = b11boa — (b12)?.
Gauss equation

y 1] — FU y e —I— sznr
Weingarten equation
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Tensor Applications

Newton’'s second law

dt o

d2y" dx'dx)

— rr——
m(dtQ T dt)’

IS valid in all coordinate systems.

Describes a force field on a curved surface, like
the interface between two fluids.
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Potential Flow

0

- |
- 1
Uso
- |
- 1
| | | |

Examples

0

. 1
. 1
Uso
_ >
- 1
\ | L

Potential Flow over Cylinder:

¢ = —Ux (1+Jf—;)rcose
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Potential Flow Examples

0

0

Potential Flow

over Salient
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Conclusions

Salient assemblage representation is important because:

e Complexity of many problems stems from repre-
sentation of irregular or deforming geometry. An
assemblage decomposes a geometric object into
asymptotic blending salient units. It models a mul-
tidimensional parametric system.

e A linear combination of a 1D salient and its deriva-
tives spans a wider collection of 1D salients.

e Salients are attached with recursive rules on dihe-
dral and semiaxis alignment.

e An assemblage covers the surface of interest with
one patch.

e An assemblage has concise data storage.
e It allows efficient computation.
ExpHermite assemblage representation has advantages:

e Built-in data fitting using ExpHermite series, a gen-
eralized Fourier series.

e Efficient polynomial computation.
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