Salient Assemblage Slide Presentation

Salient Assemblage Representation of Multidimensional, Recursive, Deforming Geometry

William L. Anderson EleSoft Research 8727 Ellington Park Dr. Charlotte, NC 28277 704-543-9180 Web and Email: www.elesoft.com

Copyright © 1990-2008 by EleSoft Research. All rights reserved.

Prototypical Salient Assemblage

Assemblage constructed from 3 salient units.

Concise data storage (24 constants)

3.0	0.0	1.0	0	0.0	0.0	1.0	0 7
2.0	0.0	0.5	0	0.0	0.5	0.5	0
2.0	0.5	0.2	0	0.0	0.5	0.2	0

Salient Assemblage Representation $y^r = f(x^i)$ Requirements

- Add, remove, reposition, deform salient units.
- Asymptotic C^{∞} salient blending.
- Topologically invariant, homeomorphic with one parameter space.
- Local control of salient direction, shape, size, and volume, at least approximately.
- Recursive attachment rules, like alignment with principal directions.
- Applies to any dimension (i = 1, 2, ..., n).

Salient Assemblage is Topologically Invariant Appended to Torus

Salient Assemblage Representation $y^r = f(x^i)$ Characteristics

- Constructive formulation, salient semiaxes form finite skeleton substructure.
- Concise data storage.
- One patch, thus no patch boundary, avoid geodesic cusp.
- Parameters usually have physical significance.
- Nowhere flat.
- Complicated algebraic expressions require computer.

Applications

- Parametric Systems (multidimensional)
 - Chemical reaction
 - Economy
 - Decision making
 - Geodesic determination
- Geometric Modeling (shape sensitive)
 - External fluid flow
 - Biological surface, deformation, growth
 - Telecommunicating complicated geometry using concise data storage

Key Issues

- What notation? Tensor notation for general curvilinear coordinate transformations.
- How to control salient direction, shape, and size, at least approximately.
- Account for parameter stretching and coordinate curve obliquity.
- Account for salient attachment in high-curvature regions.
- Efficiently compute complicated algebraic expressions.

Comparison with Other Mathematics Frequently Asked Questions

- Why not conformal mapping? Powerful but too specialized—requires analytic mapping, preserves angle, limited to 2 dimensions, corresponds to *minimal surfaces*, a special class of manifolds. A salients has less restrictive C^{∞} continuity and can be multidimensional.
- Why not 3D modeling, partition into small spline patches? Very complicated face, edge, and vertice relations in high dimensions. Patch boundaries complicate geodesic computation.
- Why not use Fourier Transform, making period arbitrarily large? Salient is more natural, not defined by a integral.
- Why is a salient a tensor-product surface? Efficient evaluation and partial derivatives, and easily extends to higher dimensions.
- Can a salient be a minimal surface? No. It has non-constant curvature. It is nowhere flat.

Comparison with Spline Representations

	Assemblage	Multi-patch Splines
primitive	salient	spline
formulation	function	discrete
recursive	yes	no
topology modeling	invariant	flexible
parameters	physical	arbitrary
patch coverage	large	small
patch boundary	C^{∞}	C^2
data storage	salient constants	control vertices

Both are parametric representations and are compatible.

Presentation Overview

- 1. Describe a salient.
- 2. Describe ExpHermite salient, a generalized Fourier series.
- 3. Describe salient attachment rules.
- 4. Derive parametric representation $y^r = f(x^i)$.
- 5. Apply differential geometry methods, e.g. geodesics.

Definitions

Definition 1 A salient is the mathematical representation of a distinguishable geometric part. It is a class C^{∞} bounded function on \mathbb{R} that, along with all its bounded derivatives, vanishes sufficiently far from one set of parametric arguments.

1D Salient

Definition 2 An assemblage is a collection of attached salients.

$$y^{0} = \eta^{0}\widehat{S},$$

$$y^{1} = x^{1} + \eta^{1}\widehat{S},$$

where η^r are direction cosines.

$$y^{0} = \eta^{0}\widehat{S},$$

$$y^{1} = x^{1} + \eta^{1}\widehat{S},$$

$$y^{2} = x^{2} + \eta^{2}\widehat{S}.$$

More concise notation for any dimension

$$y^r = \delta^r_i x^i + \eta^r \widehat{S},$$

where r = 0, 1, ..., n; i = 1, 2, ..., nand $\eta^{\rho} \eta^{\rho} = 1$.

1D Salient and Its First Three Derivatives

If 1D salient ${\cal S}$ and its derivatives are linearly independent, then linear combination

$$\widehat{S} = c^0 S + c^1 S_{;1} + c^2 S_{;11} + \dots + c^{n_h} S_{;1^{n_h}}$$
$$= c^h S_{;1^h} \quad (\text{sum on } h = 0, 1, \dots, n_h).$$
spans a wider collection of 1D salients.

2D Salient

A linear combination of a 2D salient $S(x^1, x^2)$ and its derivatives

$$\widehat{S} = c^{h_1 h_2} S_{;1^{h_1 2^{h_2}}}(x^1, x^2),$$

is also a 2D salient.

Consider only factorable S. Then \hat{S} is a *tensor*-product surface,

$$\hat{S} = \left(c_{(1)}^{h_1} S_{(1);1^{h_1}} \left(\bar{x}^1 \right) \right) \cdots \left(c_{(n)}^{h_n} S_{(n);n^{h_n}} \left(\bar{x}^n \right) \right), \\ = \prod_j c_{(j)}^{h_j} S_{(j);j^{h_j}} \left(\bar{x}^j \right).$$

Consequently,

$$y^{r} = \delta_{i}^{r} x^{i} + \eta^{r} \widehat{S} = \delta_{i}^{r} x^{i} + \eta^{r} \prod_{j} c_{(j)}^{h_{j}} S_{(j);j^{h_{j}}} \left(\bar{x}^{j} \right).$$

Although a salient is open and unbounded, ellipse nomenclature is useful.

Definition 3 Salient origin, denoted by \dot{X}^i , is the salient's local coordinate origin.

Local curvilinear coordinates, centered on salient origin, are

$$\bar{x}^i \equiv x^i - \dot{X}^i.$$

Definition 4 Salient main semiaxis is the line segment from salient origin in direction η^r .

Definition 5 Salient height is main semiaxis length.

Definition 6 Salient vertex is main semiaxis endpoint.

Definition 7 Salient \bar{x}^{j} -semiaxis is the positive canonical coordinate \bar{x}^{j} axis.

Definition 8 Salient semiaxis width $\bar{X}^{(j)}$ is the \bar{x}^{j} -semiaxis radial width at which salient height is 1/e times the main semiaxis height.

Local Curvilinear to Canonical Coordinate Transformation

In two-dimensions, scaling and rotation transformations are

$$\begin{bmatrix} \bar{x}^1\\ \bar{x}^2 \end{bmatrix} = \begin{bmatrix} 1/\bar{X}^{(1)} & 0\\ 0 & 1/\bar{X}^{(2)} \end{bmatrix} \begin{bmatrix} \zeta_1^1 & \zeta_2^1\\ \zeta_1^2 & \zeta_2^2 \end{bmatrix} \begin{bmatrix} \bar{x}^1\\ \bar{x}^2 \end{bmatrix}.$$

In any dimension,

$$\bar{x}^j = \chi^j_\alpha \zeta^\alpha_i \bar{x}^i.$$

2D Salient (Tensor-Product Surface) with Two Shapes

Rectangle and Cone Approximations (5 terms)

In this case, salient semiaxes are rotated $\pi/4$ from rectangular axes.

Candidate Salient Functions

•
$$\exp\left(-x^2\right)$$

- $2 \exp(x) / (1 + \exp(2x))$
- $\sin(ax)/x$
- Bessel function $J_0(x)$
- $J_1(x)/x$
- $\operatorname{sech}(x)$
- $1/(1 + ax^2)$

Exponent-Salient Function

$$\exp\left(-\left((x^1)^2 + \dots + (x^n)^2\right)\right) \equiv \exp\left(-x^i x^i\right).$$

continuous for parametric arguments but negligible sufficiently far from origin $(x^1, x^2, ..., x^n) = (0, 0, ..., 0).$

Approximate values are:

x^{1}	$\exp\left(-(x^1)^2\right)$
0	1
1	0.36788
2	0.01831
3	$1.23410 imes 10^{-4}$
4	$1.12535 imes 10^{-7}$
5	$1.38879 imes 10^{-11}$

Hermite Polynomials

Exponent-salient function has derivatives of all orders

$$\frac{d^{h}}{dx^{h}}\exp\left(-x^{2}\right) = \exp\left(-x^{2}\right)H_{h}\left(x\right).$$

Definition 9 Hermite polynomials are

$$H_0(x) = 1, H_1(x) = -2x, H_{h+1}(x) = -2(xH_h(x) + hH_{h-1}(x)).$$

First few Hermite Polynomials

$$H_0(x) = 1,$$

$$H_1(x) = -2x,$$

$$H_2(x) = -2 + 4x^2,$$

$$H_3(x) = 12x - 8x^3,$$

$$H_4(x) = 12 - 48x^2 + 16x^4,$$

$$H_5(x) = -120x + 160x^3 - 32x^5.$$

ExpHermite Series

Hermite polynomial products, weighted by $\exp\left(-x^2\right)$, are orthogonal,

$$\int_{-\infty}^{\infty} \exp\left(-x^{2}\right) H_{h}\left(x\right) H_{\theta}\left(x\right) \, dx = \begin{cases} 0 & \text{if } h \neq \theta \\ 2^{h} h! \sqrt{\pi} & \text{if } h = \theta. \end{cases}$$

Expand given salient function as an *ExpHermite series*

$$f(x) = \exp(-x^2) c^h H_h(x)$$
 (sum on $h = 0, 1, ..., n_h$).

where c^h are *ExpHermite coefficients* and the ExpHermite series is a generalized Fourier series. To find c^h , multiply both sides by $H_{\theta}(x)$,

$$f(x)H_{\theta}(x) = \exp\left(-x^{2}\right)c^{h}H_{h}(x)H_{\theta}(x).$$

Integrating both sides gives

$$\int_{-\infty}^{\infty} f(x) H_{\theta}(x) \, dx = c^h \int_{-\infty}^{\infty} \exp\left(-x^2\right) H_h(x) \, H_{\theta}(x) \, dx.$$

Because of orthogonality, for any particular h,

$$\int_{-\infty}^{\infty} f(x)H_h(x) \, dx = c^h \int_{-\infty}^{\infty} \exp\left(-x^2\right) \left(H_h(x)\right)^2 dx.$$

From first equation above,

$$c^{h} = \frac{1}{2^{h}h!\sqrt{\pi}} \int_{-\infty}^{\infty} f(x)H_{h}(x) dx.$$

ExpHermite Coefficients for Special Shapes

Using

$$c^{h} = \frac{1}{2^{h}h!\sqrt{\pi}} \int_{-\infty}^{\infty} f(x)H_{h}(x) dx,$$

determine coefficients:

	f(x)	c^{O}	c^2	c^4	с ^б
exponent	$\exp\left(-x^2\right)$	1	0	0	0
rectangle	1	$\frac{2}{\sqrt{\pi}}$	$\frac{-1}{6\sqrt{\pi}}$	$\frac{-1}{240\sqrt{\pi}}$	$\frac{29}{20160\sqrt{\pi}}$
cone	1 - x	$\frac{1}{\sqrt{\pi}}$	$\frac{-1}{6\sqrt{\pi}}$	$\frac{19}{1440\sqrt{\pi}}$	$\frac{-13}{20160\sqrt{\pi}}$
parabola	$1 - x^2$	$\frac{4}{3\sqrt{\pi}}$	$\frac{-1}{5\sqrt{\pi}}$	$\frac{11}{840\sqrt{\pi}}$	$\frac{-37}{90720\sqrt{\pi}}$
semicircle	$\sqrt{1-x^2}$	$\frac{\sqrt{\pi}}{2}$	$\frac{-\sqrt{\pi}}{16}$	$\frac{\sqrt{\pi}}{384}$	$\frac{\sqrt{\pi}}{18432}$

These shapes are even functions with unit height and unit semiaxis width.

Approximation by ExpHermite Series

Rectangle

$$f(x) = \begin{cases} 0 & \text{if } x < -1 \\ 1 & \text{if } -1 \le x \le 1 \\ 0 & \text{if } x > 1, \end{cases}$$

is approximated by

$$f(x) \approx \frac{\exp\left(-x^2\right)}{\sqrt{\pi}} \left(2 - \frac{1}{6}H_2(x) - \frac{1}{240}H_4(x) + \frac{29}{20160}H_6(x)\right)$$

 $-\frac{67}{580608}H_8(x)\Big).$ To compute, transform to power series $f(x) \approx \exp(-x^2) \left((((-0.01667x^2 + 0.28528)x^2 - 1.30219)x^2) + 0.28528)x^2 - 1.30219)x^2 \right)$

 $+ 1.19607)x^2 + 1.08147$.

Approximation by ExpHermite Series

2D Ramp Approximation by Tensor-Product of ExpHermite Series

2D Rectangle Approximation by Tensor-Product of ExpHermite Series

ExpHermite Series Successive Approximations Change Shape but not Volume

Since

$$\int_{-\infty}^{\infty} \exp\left(-x^2\right) \, dx = \sqrt{\pi},$$

and for h > 0,

$$\int_{-\infty}^{\infty} \exp\left(-x^{2}\right) H_{h}(x) \, dx = 0,$$

then volume V under approximating surface is

$$V = \int_{\mathcal{X}} \exp\left(-\bar{x}^{\gamma} \bar{x}^{\gamma}\right) \prod_{j} c_{(j)}^{h_{j}} H_{h_{j}}\left(\bar{x}^{j}\right) dx^{1} \cdots dx^{n},$$

$$= \left(\prod_{j} c_{(j)}^{0}\right) \int_{\bar{\mathcal{X}}} \exp\left(-\bar{x}^{\gamma} \bar{x}^{\gamma}\right) d\bar{x}^{1} \cdots d\bar{x}^{n},$$

$$= \pi^{n/2} \prod_{j} c_{(j)}^{0}.$$

Assemblage Definitions

Definition 10 An **assemblage** is a collection of attached salients.

Definition 11 A salient's **parent** is the assemblage to which it is attached.

Definition 12 A salient is a **child** to its parent.

Definition 13 A child's **bud** is the point $\dot{Y}^r = y^r(\dot{X}^i)$, located on the parent.

Definition 14 A child's **dihedral** is the minimum angle its main semiaxis forms with the parent's tangent plane at the bud.

Salient Attachment by Vector Addition

Each salient depends on all its parents.

Salient Direction Cosine (Dihedral) Rule

The *m*th salient main semiaxis can have any direction η_m^r , but usually is either:

- parent's unique normal vector,
- *branch angle*, coplanar with parent's positive main semiaxis,
- fixed angle to rectangular axes y^r .

Rule can be an inherited.

Parameter Stretching and Coordinate Curve Obliquity

Child Salients Affected by Parameter Stretching

Coordinate Curve Obliquity

Arc-Length and Oblique Coordinate Transformations

Given by metric tensor g_{ij} at salient origin.

Arc-length coordinate transformation (2D)

$$[\lambda_i^{\varepsilon}] = \left[\begin{array}{cc} \sqrt{g_{11}} & 0\\ 0 & \sqrt{g_{22}} \end{array} \right].$$

Oblique coordinate transformation (2D)

$$[\omega_{\varepsilon}^{\gamma}] = \begin{bmatrix} 1 & \frac{g_{12}}{\sqrt{g_{11}}\sqrt{g_{22}}} \\ & & \\ 0 & \sqrt{1 - \frac{(g_{12})^2}{g_{11}g_{22}}} \end{bmatrix}$$

from Gramm-Schmidt orthonormalization.

,

Semiaxis Alignment Coordinate Transformation

Semiaxes are aligned with either:

- principal directions at bud, eigenvectors of $[b_{i\alpha}] [x^{\alpha}] = \kappa [g_{i\alpha}] [x^{\alpha}].$
- branch angle direction, in the normal section that is parallel to the parent's positive main semiaxis,
- fixed direction relative to rectangular axes $y^r\mbox{,}$
- one coordinate curve tangent vector.

Rule can be an inherited.

Salient Addition

Salient addition is closed.

Addition of a coupled salient is non-commutative and non-associative.

Salient Attachment in High-Curvature Regions

Definition 15 If child salient is smaller, the interaction is **hierarchical** or **tree-like**.

Definition 16 If child salient is approximately the same size or larger, the interaction is **tumorlike**, or if flattened **anvil-like**.

Tree-like and Tumor-like Salient Interaction

Two widely separated salients m_1 and m_2 are approximately orthogonal,

$$\int_{\mathbb{R}^n} |\widehat{S}^{m_1} \widehat{S}^{m_2}| \, dx^1 \, dx^2 \cdots \, dx^n \approx 0.$$

Salient Assemblage Representation

Overall coordinate transformation

$$\Upsilon^{j}_{(m)i} \equiv \chi^{j}_{(m)\alpha} \zeta^{\alpha}_{(m)\beta} \varsigma^{\beta}_{(m)\gamma} \omega^{\gamma}_{(m)\varepsilon} \lambda^{\varepsilon}_{(m)i}.$$

Canonical coordinates

$$\bar{x}_{(m)}^{j} = \Upsilon_{(m)i}^{j} \left(x^{i} - \dot{X}_{(m)}^{i} \right).$$

Parametric representation

$$y^{r} = \delta^{r}_{i} x^{i} + \eta^{r}_{m} \widehat{S}^{m}, = \delta^{r}_{i} x^{i} + \eta^{r}_{m} \prod_{j} c^{h_{j}}_{(mj)} S^{m}_{(j);j^{h_{j}}} \left(\bar{x}^{j}_{(m)} \right).$$

First partial derivative

$$y_{,k}^{r} = \delta_{k}^{r} + \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \widehat{S}_{,\alpha}^{m},$$

$$= \delta_{k}^{r} + \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \prod_{j} c_{(mj)}^{h_{j}} S_{(j);j}^{m} \sum_{j} \delta_{j}^{\alpha} \left(\overline{x}_{(m)}^{j} \right).$$

Second partial derivative

$$y_{,kl}^{r} = \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \Upsilon_{(m)l}^{\beta} \widehat{S}_{,\alpha\beta}^{m},$$

$$= \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \Upsilon_{(m)l}^{\beta} \prod_{j} c_{(mj)}^{h_{j}} S_{(j);j}^{m} \sum_{j} \delta_{j}^{\alpha} + \delta_{j}^{\beta} \left(\overline{x}_{(m)}^{j} \right).$$

1D ExpHermite Assemblage

ExpHermite salients in the form

$$\widehat{S}^{m} = \exp^{m} \left(-(\bar{x}_{(m)}^{1})^{2} \right) c_{(m)}^{h} H_{h} \left(\bar{x}_{(m)}^{1} \right).$$

combine to form assemblage like

Cone, Parabola, and Rectangle in Tree

ExpHermite Salient Assemblage Representation

Parametric representation

$$y^{r} = \delta_{i}^{r} x^{i} + \eta_{m}^{r} \exp^{m} \left(-\bar{x}_{(m)}^{\gamma} \bar{x}_{(m)}^{\gamma} \right) \prod_{j} c_{(mj)}^{h_{j}} H_{h_{j}} \left(\bar{x}_{(m)}^{j} \right).$$

First partial derivative $y_{,k}^{r} = \delta_{k}^{r} + \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \exp^{m} \left(-\bar{x}_{(m)}^{\gamma} \bar{x}_{(m)}^{\gamma} \right) \prod_{j} c_{(mj)}^{h_{j}} H_{h_{j} + \delta_{j}^{\alpha}} \left(\bar{x}_{(m)}^{j} \right).$

Second partial derivative

$$y_{,kl}^{r} = \eta_{m}^{r} \Upsilon_{(m)k}^{\alpha} \Upsilon_{(m)l}^{\beta} \exp^{m} \left(-\bar{x}_{(m)}^{\gamma} \bar{x}_{(m)}^{\gamma} \right) \prod_{j} c_{(mj)}^{h_{j}} H_{h_{j} + \delta_{j}^{\alpha} + \delta_{j}^{\beta}} \left(\bar{x}_{(m)}^{j} \right).$$

Global Cylindrical Coordinates

 (ρ,θ,z) to rectangular y^r

$$y^{0} = z,$$

$$y^{1} = \rho \cos \theta,$$

$$y^{2} = \rho \sin \theta.$$

Inverse transformation

$$z = y^{0},$$

$$\rho = \sqrt{(y^{1})^{2} + (y^{2})^{2}},$$

$$\theta = \tan^{-1} \left(\frac{y^{2}}{y^{1}} \right).$$

Global cylinder $\rho = R$ is

$$x^1 = R\sin\theta,$$

$$x^2 = z.$$

Global point ($\dot{\Theta}, \dot{Z}$) becomes m_0 salient origin

$$\dot{X}_{(0)}^1 = R \sin \dot{\Theta}_{(0)}, \dot{X}_{(0)}^2 = \dot{Z}_{(0)}.$$

Global Spherical-Polar Coordinates

 (ρ,ϕ,θ) to rectangular y^r

$$y^{0} = \rho \cos \phi,$$

$$y^{1} = \rho \sin \phi \cos \theta,$$

$$y^{2} = \rho \sin \phi \sin \theta.$$

Inverse transformation

$$\rho = \sqrt{(y^0)^2 + (y^1)^2 + (y^2)^2},$$

$$\phi = \tan^{-1} \left(\sqrt{(y^1)^2 + (y^2)^2} / y^0 \right),$$

$$\theta = \tan^{-1} \left(y^2 / y^1 \right).$$

Global sphere $\rho = R$ is

$$x^{1} = R \sin \phi \cos \theta,$$

$$x^{2} = R \sin \phi \sin \theta,$$

Global point $(\dot{\Theta}, \dot{\Phi})$ becomes m_0 salient origin

$$\dot{X}_{(0)}^{1} = R \sin \dot{\Phi}_{(0)} \cos \dot{\Theta}_{(0)}, \dot{X}_{(0)}^{2} = R \sin \dot{\Phi}_{(0)} \sin \dot{\Theta}_{(0)}.$$

Assemblage Self-Intersection

Position vectors y^r of main semiaxes:

$$y^{r(m_1)} = \dot{Y}^r_{(m_1)} + t_1 \eta^r_{(m_1)},$$

$$y^{r(m_2)} = \dot{Y}^r_{(m_2)} + t_2 \eta^r_{(m_2)},$$

where $\dot{Y}^r_{(m_1)}$ and $\dot{Y}^r_{(m_2)}$ are buds, and t_1 and t_2 are scalar real parameters. Perpendicular connecting vector

$$\begin{pmatrix} y^{r(m_1)} - y^{r(m_2)} \end{pmatrix} \eta_{r(m_1)} = 0, \begin{pmatrix} y^{r(m_1)} - y^{r(m_2)} \end{pmatrix} \eta_{r(m_2)} = 0.$$

So

$$\begin{bmatrix} \eta_{(m_1)}^r \eta_{r(m_1)} & -\eta_{(m_2)}^r \eta_{r(m_1)} \\ \eta_{(m_1)}^r \eta_{r(m_2)} & -\eta_{(m_2)}^r \eta_{r(m_2)} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} -(\dot{Y}_{(m_1)}^r - \dot{Y}_{(m_2)}^r) \eta_{r(m_2)} \\ -(\dot{Y}_{(m_1)}^r - \dot{Y}_{(m_2)}^r) \eta_{r(m_2)} \end{bmatrix}$$

Concise Data Storage

Salient-constant array for 2D assemblage

[- c ₍₀₎	$\dot{X}^{1}_{(0)}$	$\bar{X}_{(0)}^{(1)}$	$shape_{(0)}^1$	$\zeta_{(0)}$	$\dot{X}^{2}_{(0)}$	$\bar{X}_{(0)}^{(2)}$	shape $^{2}_{(0)}$
	$c_{(1)}$	$\dot{X}_{(1)}^{1}$	$\bar{X}_{(1)}^{(1)}$	$shape_{(1)}^1$	$\zeta_{(1)}$	$\dot{X}_{(1)}^{2}$	$\bar{X}_{(1)}^{(2)}$	$shape_{(1)}^2$
	<i>c</i> ₍₂₎	$\dot{X}^{1}_{(2)}$	$\bar{X}_{(2)}^{(1)}$	$shape_{(2)}^1$	$\zeta_{(2)}$	$\dot{X}^{2}_{(2)}$	$\bar{X}_{(2)}^{(2)}$	$shape_{(2)}^2$
	_ :	÷	÷	÷	÷	÷	÷	:

One row for each salient.

Facilitate telecommunicating a complicated geometry.

Efficient Computation

Assemblage

- Predict negligible terms from parameter values.
- Univariate factors in tensor-product.
- If recursive formula exists and is more efficient, use it.
- For non-deforming, precompute assemblage constants.
- For non-deforming, precompute coupling matrix.
- For partial derivatives, reuse previously computed function evaluations and repeating chain-rule factors.

ExpHermite Assemblage

- Exponent function $\exp\left(-x^2\right)$ factors out, leaving efficient polynomial.
- Transform Hermite series to power series.
- If factor is even or odd function, half the terms are zero and can be bypassed.

Transform Hermite Series to Power Series

Hermite series has equivalent power series

$$d_{(mj)\delta_j^{\alpha}h_k}^{q_j}P_{q_j}\left(\bar{x}_{(m)}^j\right) = c_{(mj)}^{h_j}H_{h_j+\delta_j^{\alpha}h_k}\left(\bar{x}_{(m)}^j\right),$$

where

$$P_{q_j}\left(\bar{x}^j_{(m)}\right) \equiv \left(\bar{x}^j_{(m)}\right)^{q_j}.$$

Coefficients transform as

$$d_{(mj)h_k}^{q_j} = \varpi_{\vartheta}^{q_j} \delta_{\theta+h_k}^{\vartheta} c_{(mj)}^{\theta},$$

where

$$\begin{bmatrix} \varpi_{\vartheta}^{q_j} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -2 & 0 & 12 \\ 0 & -2 & 0 & 12 & 0 \\ 0 & 0 & 4 & 0 & -48 \\ 0 & 0 & 0 & -8 & 0 \\ 0 & 0 & 0 & 0 & 16 \\ & & & & \ddots \end{bmatrix}.$$

Multiplication $\delta^{\vartheta}_{\theta+h_k} c^{\theta}_{(mj)}$ is equivalent to a shift of array c elements.

Parametric representation and its first two partial derivatives

$$y^r$$
, $y^r_{,k}$, $y^r_{,kl}$.

Jacobian matrix

$$J \equiv [J_i^r]_{(n+1) \times n} \equiv y_{,i}^r.$$

Base vectors are functions of position (curvilinear coordinates)

$$\mathbf{a}_i = \mathbf{y}_{,i} \equiv y_{,i}^{\rho} \mathbf{e}_{\rho}.$$

Metric tensor

$$g_{ij} \equiv \mathbf{a}_i \mathbf{a}_j.$$

Since y^r are rectangular coordinates with the *Euclidean metric*,

$$\left[g_{ij}\right] = J^T J = \left[y_{,i}^{\rho} y_{,j}^{\rho}\right].$$

A more general *Riemannian metric*, including non-Euclidean, is

$$\left[g_{ij}\right] = J^T G J.$$

If J is full rank, then there exists a g^{ij} such that

$$g^{i\alpha}g_{\alpha j}=\delta^i_j.$$

Metric tensor determinant

$$g \equiv |g_{ij}|.$$

For two dimensions, $g = g_{11}g_{22} - (g_{12})^2$.

Cosine between x^i and x^j -parametric curves

 $\cos \omega = g_{ij} / \sqrt{g_{ii} g_{jj}}$ (no sum on i, j). Invariant *First Fundamental Form*

$$I \equiv g_{ij} dx^i \, dx^j.$$

Christoffel symbols of the first kind

$$\Gamma_{ijk} \equiv \frac{1}{2} \left(g_{jk,i} + g_{ki,j} - g_{ij,k} \right).$$

With rectangular coordinates y^r and Euclidean metric

$$\Gamma_{ijk} = y^{\rho}_{,k} \, y^{\rho}_{,ij}.$$

Christoffel symbols of the second kind

$$\Gamma^k_{ij} \equiv g^{k\alpha} \Gamma_{ij\alpha}$$

Riemannian tensor of the second kind

$$R^{i}_{jkl} \equiv \Gamma^{i}_{jl,k} - \Gamma^{i}_{jk,l} + \Gamma^{\alpha}_{jl}\Gamma^{i}_{\alpha k} - \Gamma^{\alpha}_{jk}\Gamma^{i}_{\alpha l}.$$

Riemannian tensor of the first kind

$$R_{ijkl} \equiv g_{i\alpha} R^{\alpha}_{jkl}.$$

Gaussian curvature on a two-dimensional surface

$$K = \frac{R_{1212}}{g_{11}g_{22} - (g_{12})^2}.$$

Surface curve, function of parameter t,

$$x^i \equiv x^i(t),$$

in ambient coordinates \boldsymbol{y}^r , is composite function

$$y^r \equiv y^r(x^i(t)).$$

Curve's tangent is given by chain-rule

$$\frac{dy^r}{dt} = y^r_{,i} \frac{dx^i}{dt}.$$

Square of differential arc length is

$$(ds)^2 = g_{ij} \, dx^i \, dx^j.$$

Curve arc length is

$$s = \int_{x_0}^{x_1} \sqrt{g_{ij} \, dx^i \, dx^j} = \int_{t_0}^{t_1} \sqrt{g_{ij} \, \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt.$$

Two-dimensional surface area is

$$A = \int_{\mathcal{X}} \sqrt{g} \, dx^1 \, dx^2.$$

Geodesic

A geodesic $x^i(s)$ solves system of differential equations

$$\frac{d^2x^k}{ds^2} + \Gamma^k_{ij}\frac{dx^i}{ds}\frac{dx^j}{ds} = 0.$$

Geodesic on surface (http://www.netlib.org/ode/geodesic/)

Geodesic in parameter space

Surface normal vector

$$N_r = \epsilon_{rst} \, y^s_{,1} \, y^t_{,2}.$$

Unit normal vector

$$n_r \equiv N_r / \sqrt{N_{
ho} N_{
ho}}.$$

Invariant Second Fundamental Form

$$II \equiv b_{ij} dx^i \, dx^j,$$

with coefficients from *curvature tensor*

$$b_{ij} \equiv y^{\rho}_{,ij} n_{\rho}.$$

For two dimensions,

$$b \equiv |b_{ij}| = b_{11}b_{22} - (b_{12})^2.$$

Gauss equation

$$y_{,ij}^r = \Gamma_{ij}^{\alpha} y_{,\alpha}^r + b_{ij} n^r.$$

Weingarten equation

$$n_{,i}^r = -g^{\alpha\beta}b_{i\alpha}y_{,\beta}^r = -b_i^\beta y_{,\beta}^r.$$

Tensor Applications

Newton's second law

$$F^{r} = m \frac{dv^{r}}{dt},$$

= $m \left(\frac{d^{2}y^{r}}{dt^{2}} + \Gamma^{r}_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt} \right),$

is valid in all coordinate systems.

Describes a force field on a curved surface, like the interface between two fluids.

Potential Flow Examples

Potential Flow over Plane: $\phi = -U_{\infty}x^2$

Potential Flow over Cylinder: $\phi = -U_{\infty} \left(1 + \frac{R^2}{r^2}\right) r \cos \theta$

Potential Flow Examples

Potential Flow over Sphere: $\phi = -U_{\infty} \left(1 + \frac{R^3}{2r^3}\right) r \cos \theta$

Potential Flow over Salient

Conclusions

Salient assemblage representation is important because:

- Complexity of many problems stems from representation of irregular or deforming geometry. An assemblage decomposes a geometric object into asymptotic blending salient units. It models a multidimensional parametric system.
- A linear combination of a 1D salient and its derivatives spans a wider collection of 1D salients.
- Salients are attached with recursive rules on dihedral and semiaxis alignment.
- An assemblage covers the surface of interest with one patch.
- An assemblage has concise data storage.
- It allows efficient computation.

ExpHermite assemblage representation has advantages:

- Built-in data fitting using ExpHermite series, a generalized Fourier series.
- Efficient polynomial computation.